Adaptive Volumetric Shadow Maps

Marco Salviy, Kiril Vidimce, Andrew Lauritzen and Aaron Lefohn

presenters:
John Koutsoumpas
Nick Linakis
Pre-existed Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opacity shadow Maps [Kim et al. 2001]</td>
<td>Numerous variants optimized to handle special case (i.e. hair).</td>
</tr>
<tr>
<td>Fourier Opacity Mapping [Jansen et al. 2010]</td>
<td>Converge slowly, especially around sharp features</td>
</tr>
<tr>
<td></td>
<td>Depth range dependent.</td>
</tr>
</tbody>
</table>

Adaptive Volumetric Shadow Maps
Introduction

- Streaming simplification algorithm.

- Generates an adaptive volumetric light attenuation function using a small fixed memory footprint.

- Does not require prior knowledge about spatial distribution of the light blockers.
Algorithm Overview

AVSM

- Map generation
- Stream compression
- Texel sampling
AVSM - Generation

\[t(z) = e^{- \int_0^1 f(x) \, dx} \]

Light transmittance

Attenuation function: light absorbed

Adaptive Volumetric Shadow Maps
AVSM – Generation

• Render the scene from the light’s viewpoint.
• Insert and render a non-opaque occluder.
 • Record density, entry and exit points.
• Insert segments representing the ray’s traversal through the particle.
AVSM – Generation

• Store fixed-size array including nodes for each texel.
• Node \(\rightarrow (d_i, t_i) \)
• Adaptively place nodes
 • Various shadow blocker representation.
• \(N \geq 2 \)

Adaptive Volumetric Shadow Maps
AVSM – Generation

Integrate and composite transmittance over the segment with existing values

Adaptive Volumetric Shadow Maps
AVSM – Compression

- Real-time *lossy* compression of transmittance data
 - Inexpensive
 - Small error rate
- Remove the node that contributes less
- Keep first and last node intact
- Compression must not re-arrange node positions
 - Nodes can drift unpredictably
 - Artifacts (black/bright shadows, temporal aliasing)
AVSM – Compression

- Assume linear variation to simplify computations
- Compute integral variation
- Removing a node affects only the area of the involved trapezoids

\[I_t = \sum_{i=0}^{N-1} \frac{1}{2} (d_{i+1} - d_i) (t_i + t_{i+1}) \]

Adaptive Volumetric Shadow Maps
AVSM – Compression

Triangle area represents the Integral variation

max nodes: 5
current nodes: 5

Adaptive Volumetric Shadow Maps
AVSM – Sampling

- Compute overall transmittance
 - Find bounding nodes of shadow receiver in depth d
- Bilinear filtering

$$T(d) = t_l + (d - d_l) \frac{t_r - t_l}{d_r - d_l}$$

(t_l, d_l) \rightarrow texel \rightarrow (t_r, d_r)
Evaluation

Uncompressed (238 Nodes)
Adaptive Volumetric Shadow Maps (12 Nodes)
Fourier Opacity Maps (16 terms)
Opacity Shadow Maps (32 slices)
Deep Shadow Maps
Smoke + Hair Comparisons
Benefits – Limitations

- Higher image quality via adaptive sampling in real-time.
- Predefined knowledge of light blockers type and spatial distribution is not required.
- Possible to balance image quality over speed and storage.

- Sacrifices quality over performance.
 - Not preferable for offline rendering (e.g. film rendering).
- In case of low number of nodes
 - Re-sort nodes to avoid temporal artifacts.

Adaptive Volumetric Shadow Maps
References

Thank you for your attention!

Questions?